Exploring the second class constraint quantization approach proposed by Batalin and Marnelius
نویسنده
چکیده
I extend upon the paper by Batalin and Marnelius, in which they show how to construct and quantize a gauge theory from a Hamiltonian system with second class constraints. Among the avenues explored, their technique is analyzed in relation to other well-known methods of quantization and a bracket is defined, such that the operator formalism can be fully developed. I also extend to systems with mixed class constraints and look at some simple examples.
منابع مشابه
Batalin-Vilkovisky quantization of symmetric Chern-Simons theory
We study the manifestly covariant three-dimensional symmetric ChernSimons action in terms of the Batalin-Vilkovisky quantization method. We find that the Lorentz covariant gauge fixed version of this action is reduced to the usual Chern-Simons type action after a proper field redefinition. Furthermore, the renormalizability of the symmetric Chern-Simons theory turns out to be the same as that o...
متن کاملBatalin-Tyutin quantization of the self-dual massive theory in three dimensions.
We quantize the self-dual massive theory by using the Batalin-Tyutin Hamiltonian method, which systematically embeds second class constraint system into first class one in the extended phase space by introducing the new fields. Through this analysis we obtain simultaneously the Stückelberg scalar term related to the explicit gaugebreaking effect and the new type of Wess-Zumino action related to...
متن کاملBatalin-Tyutin Quantization of the (2+1) dimensional nonabelian Chern-Simons field theory
The (2+1) dimensional nonabelian Chern-Simons theory coupled to complex scalar fields is quantized by using the Batalin-Tyutin canonical Hamiltonian method which systematically embeds second-class constraint system into first-class one. We obtain the gauge-invariant nonabelian Wess-Zumino type action in the extended phase space. ∗ E-mail address : [email protected] † E-mail address : yjpark@...
متن کاملComments on the Covariant Sp(2)-Symmetric Lagrangian BRST Formalism
We give a simple geometrical picture of the basic structures of the covariant Sp(2) symmetric quantization formalism – triplectic quantization – recently suggested by Batalin, Marnelius and Semikhatov. In particular, we show that the appearance of an even Poisson bracket is not a particular property of triplectic quantization. Rather, any solution of the classical master equation generates on a...
متن کاملFirst order gauge field theories from a superfield formulation
Recently, Batalin and Marnelius proposed a superfield algorithm for master actions in the BV-formulation for a class of first order gauge field theories. Possible theories are determined by a ghost number prescription and a simple local master equation. We investigate consistent solutions of these local master equations with emphasis on four and six dimensional theories. E-mail: [email protected]...
متن کامل